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Let f(z) = ¥, a;2* be an entire function. As usual, write

M(r) = max | f(2)} .
Let us denote ‘

Yo = o () = jaf.

where 7, is the class of all algebraic polynomials of degree at most ».
Recently, we have proved the following result [4, Theorem 7'].
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THEOREM 1. Let f(2) = Yy o @12%, ay > 0, a, = 0 (k = 1), be an entire

function satisfying the assumptions

. loglog M(ry _ , | B _
and
. M .. . log M
lmrlosoup(logwg-}1 = B, hrgénf(l—(iﬂ%)l =b; (0<b < B << o).
(3)
Then
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Remark. Theorem 7 of [2] follows from (4).
We prove here the following
THEOREM 2. Under the assumptions of Theorem 1,
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For proof we need:

LeMMA 1.[3]. Let f(2) = Xrooaxz* be an entire function satisfying the
assumptions 0 << A < oo and 0 < B, < 0. Then
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Proof of Theorem 2. Let ¢ > 0. The coefficients of f(x) being non-
negative, we have from (3), forr = ry(e) and 0 << x < r,

0 < f(x) < f(r) = M(r) < exp(By1 + €)(log r)**H). ()
From (7), for
r = exp ([—B—l(—lzi’m]wm) . 1), )
we obtain
0 <flx) <f(r) <en ©)

It is clear from (4) that there is a ¢ > 1 for which, for all n = ny(e),
qn(AH)/A < Aal . (10)
From (9) and (10) we get, for all n > 1 > max(n,, ny),
0 <f(x) <f(r) < en < eoganl@id (1)

Next, we pick P,* € 7, , which gives best approximation in the sense of (1).
Then from (1),

—f3x)
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It is easy to derive from (12),

<Pn**f(x)<r_¥i£’f})((~)c), o<x<r. (12

e4n

| Pa* — fOOl <X_‘_—7'7’

— n . (13)
0,7

Next, let
E(f) = jnf | Pa() = {0 (4

We obtain from (13) and (14)

an

Ef) < #:632—" for all n > A. (15)
0.7
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By applying a result of Bernstein [I, p. 10] to (14), we obtain

rn+1

E, > %l (16)

= 22n+r .

From Lemma 1 we get for a sequence of values n =n,,p = pye), ¢ =

(1—e).

_,(n + 1)(A+1)/AA

Upyq = €XP ((/1 T 1)@anja B;/Ac) (17
From (8), (15), (16), and (17), we get for all such n,
2n 1/(A41) . (}’I _.'_ 1)(/1+1)/AA (341 e4n

[exp (( B+ o ) (A + 1)@D/4 B}/Ac)] 2 < AL e
(18)

A simple calculation based on (18), gives for such n,

g ey (0 DA
Aglu < 25" exp ( (A F T)ania Bll//lc) . (19)

From (19) we easily obtain the required result by noting that ¢ — 1.
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