## Rational Chebyshev Approximation to Certain Entire Functions of Zero Order on the Positive Real Axis

## A. R. REDDY

Department of Mathematics, Yeshiva University, New York, N.Y. 10033

Communicated by Oved Shisha

Let  $f(z) = \sum_{k=0}^{\infty} a_k z^k$  be an entire function. As usual, write

$$M(r) = \max_{|z|=r} |f(z)|.$$

Let us denote

$$\lambda_{0,n} = \lambda_{0,n} \left( \frac{1}{f} \right) = \inf_{P_n \in \pi_n} \left| \frac{1}{f(x)} - \frac{1}{P_n(x)} \right|_{\mathscr{L}_{\infty}[0,\infty)} \tag{1}$$

where  $\pi_n$  is the class of all algebraic polynomials of degree at most n. Recently, we have proved the following result [4, Theorem 7'].

THEOREM 1. Let  $f(z) = \sum_{k=0}^{\infty} a_k z^k$ ,  $a_0 > 0$ ,  $a_k \ge 0$   $(k \ge 1)$ , be an entire function satisfying the assumptions

$$\limsup_{r\to\infty} \frac{\log\log M(r)}{\log\log r} = \Lambda + 1 \qquad (0 < \Lambda < \infty)$$
 (2)

and

$$\limsup_{r \to \infty} \frac{\log M(r)}{(\log r)^{A+1}} = B_l, \qquad \liminf_{r \to \infty} \frac{\log M(r)}{(\log r)^{A+1}} = b_l; \qquad (0 < b_l \leqslant B_l < \infty).$$
(3)

Then

$$\limsup_{n\to\infty} \lambda_{0,n}^{n-(\Lambda+1)/\Lambda} < 1. \tag{4}$$

Remark. Theorem 7 of [2] follows from (4). We prove here the following

THEOREM 2. Under the assumptions of Theorem 1,

$$\limsup_{n\to\infty} \lambda_{0,n}^{n-(\Lambda+1)/\Lambda} \geqslant \exp\left(\frac{-\Lambda}{(\Lambda+1)[B_l(\Lambda+1)]^{1/\Lambda}}\right). \tag{5}$$

206

For proof we need:

LEMMA 1.[3]. Let  $f(z) = \sum_{k=0}^{\infty} a_k z^k$  be an entire function satisfying the assumptions  $0 < \Lambda < \infty$  and  $0 < B_1 < \infty$ . Then

$$\limsup_{n \to \infty} \frac{n^{A+1}}{\{\log |1/a_n|\}^A} = \frac{(A+1)^{A+1} B_t}{A^A}.$$
 (6)

*Proof of Theorem* 2. Let  $\epsilon > 0$ . The coefficients of f(x) being nonnegative, we have from (3), for  $r \ge r_0(\epsilon)$  and  $0 \le x \le r$ ,

$$0 < f(x) \leqslant f(r) = M(r) \leqslant \exp(B_l(1+\epsilon)(\log r)^{A+1}). \tag{7}$$

From (7), for

$$r = \exp\left(\left[\frac{2n}{B_1(1+\epsilon)}\right]^{1/(A+1)}\right), \qquad n \geqslant n_0(\epsilon), \tag{8}$$

we obtain

$$0 < f(x) \leqslant f(r) \leqslant e^{2n}. \tag{9}$$

It is clear from (4) that there is a q > 1 for which, for all  $n \ge n_1(\epsilon)$ ,

$$q^{n^{(A+1)/A}} \leqslant \lambda_{0.n}^{-1}. \tag{10}$$

From (9) and (10) we get, for all  $n \geqslant \bar{n} \geqslant \max(n_1, n_0)$ ,

$$0 < f(x) \leqslant f(r) \leqslant e^{2n} < e^{(\log q) n^{(A+1)/A}} \leqslant \lambda_{0,n}^{-1}.$$
 (11)

Next, we pick  $P_n^* \in \pi_n$ , which gives best approximation in the sense of (1). Then from (1),

$$\frac{-f^2(x)}{f(x) + \lambda_{0,n}^{-1}} \leqslant P_n^* - f(x) \leqslant \frac{f^2(x)}{\lambda_{0,n}^{-1} - f(x)}, \quad 0 \leqslant x \leqslant r.$$
 (12)

It is easy to derive from (12),

$$||P_n^* - f(x)|| \le \frac{e^{4n}}{\lambda_{0,n}^{-1} - e^{2n}}, \quad n \ge \bar{n}.$$
 (13)

Next, let

$$E_n(f) \equiv \inf_{P_n \in \pi_n} || P_n(x) - f(x) ||_{[0,r]}.$$
 (14)

We obtain from (13) and (14)

$$E_n(f) \leqslant \frac{e^{4n}}{\lambda_{0,n}^{-1} - e^{2n}} \quad \text{for all } n \geqslant \bar{n}.$$
 (15)

By applying a result of Bernstein [1, p. 10] to (14), we obtain

$$E_n \geqslant \frac{a_{n+1}r^{n+1}}{2^{2n+1}}. (16)$$

From Lemma 1 we get for a sequence of values  $n = n_p$ ,  $p \ge p_0(\epsilon)$ ,  $c = (1 - \epsilon)'$ .

$$a_{n+1} \geqslant \exp\left(\frac{-(n+1)^{(A+1)/A} \Lambda}{(A+1)^{(A+1)/A} B_1^{1/A}_e}\right).$$
 (17)

From (8), (15), (16), and (17), we get for all such n,

$$\left[\exp\left(\left(\frac{2n}{B_{l}(1+\epsilon)}\right)^{1/(A+1)} - \frac{(n+1)^{(A+1)/A}A}{(A+1)^{(A+1)/A}B_{l}^{1/A}c}\right)\right]2^{-(2n+1)} \leqslant \frac{e^{4n}}{\lambda_{0,n}^{-1} - e^{2n}}.$$
(18)

A simple calculation based on (18), gives for such n,

$$\lambda_{0,n}^{-1} \leqslant 2^{8n} \exp\left(\frac{(n+1)^{(\Lambda+1)/\Lambda} \Lambda}{(\Lambda+1)^{(\Lambda+1)/\Lambda} B_1^{1/\Lambda} c}\right). \tag{19}$$

From (19) we easily obtain the required result by noting that  $c \to 1$ .

## REFERENCES

- S. N. Bernstein, Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d'une variable réelle, Gauthier-Villars, Paris, 1926.
- G. Meinardus, A. R. Reddy, G. D. Taylor, and R. S. Varga, Converse theorems and extentions in Chebyshev rational approximation to certain entire functions in [0, ∞), Bull. Amer. Math. Soc. 77 (1971), 460–461; Trans. Amer. Math. Soc. 170 (1972), 171–185.
- A. R. Reddy, Approximation of an entire function, J. Approximation Theory 3 (1970), 128-137.
- A. R. Reddy, Addendum to Converse theorems and extensions in Chebyshev rational approximation to certain entire functions in [0, ∞), Trans. Amer. Math. Soc. 186 (1973), 499-502.